INTRODUCTION

If-Then Recipes/Programs
A conditional statement of "If This, Then That": whenever the trigger condition ("This") is satisfied, the action ("That") will be performed.

4 Components: Trigger ("tc"), Trigger Function ("tf"), Action Condition ("ac"), Action Function ("af").

Semantic Parsing for If-Then Recipes
Parsing a natural language (NL) description to a corresponding If-Then recipe.

Example:
Create a link note on Evernote for my liked tweets.

Application:
- Widely adopted for Task/Routine Automation and Smart-Home: “Text me if the door is unlocked”, “Send me the weather report every day at 7AM”, etc.

MOTIVATION

Description Ambiguity
An NL description can be ambiguous or contain incomplete information.

User “need to create”
- General description: ac Twitter, tf New liked tweet by you, tc Evernote, af Create a link note

Based on ~4K recipes collected from real users [1], 80% of recipe descriptions are ambiguous!

May fail a well-trained semantic parser.

INTERACTIVE SEMANTIC PARSING

Our Solution: Ask Human Questions
An intelligent agent can ask clarifying questions to resolve description ambiguity.

Our Aim:
- Improve parsing accuracy with minimal questions, without supervision on when/what to ask.

Hierarchical RL (HRL)

Hierarchical Policy [2]

- **High-level policy** $x_{(0)}(s_{(0)})$
- **Low-level policy** $x_{(1)}(s_{(1)})$

Rules:
- High-level policy selects a subtask g_1 (i.e., completing one of the 4 components) to work on.
- Low level policy completes each subtask by taking actions to either make a prediction or ask user.
- Semantic parsing = a sequence of high/low-level decisions.

Low-Level Policy Function:

$\hat{x}_{(1)}^*(s_{(1)})$: the low-level state representation for subtask $s_{(1)}$

$\hat{x}_{(1)}^*(s_{(1)}) = \text{tanh}(w_{h}(s_{(1)};...;s_{(1)});v_{h};s_{(1)};...;s_{(1)}))$

We define one policy for each subtask.

High-Level Policy Function:

b_i: whether the subtask s_{i} has been predicted

Training by Rewarding

Low-level reward (when taking action a_i for subtask g_i):

$r_{tb}(s_i, a_i) = \begin{cases} 1 & \text{if } a_i = \ell_g \\ 0 & \text{if } a_i = \text{AskUser} \\ -\beta & \text{otherwise} \end{cases}$

ℓ_g: true label of subtask g_i. $-\beta$ is the penalty for asking questions.

High-level reward for g_1: accumulative low-level reward for completing g_1.

Optimization:
Maximize accumulative high/low-level reward via REINFORCE [3].

EXPERIMENTS

Experiment Setup

Dataset:
- Training: 291,285 <NL description, Recipe> pairs from [4].
- Testing set collected & annotated by [1]:

<table>
<thead>
<tr>
<th>Size</th>
<th>CI (%)</th>
<th>VI-1/2</th>
<th>VI-3/4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>1.97</td>
<td>1.92</td>
<td>3.850</td>
<td></td>
</tr>
</tbody>
</table>

- **CI:** recipes with descriptions clear in all 4 subtasks for annotators.
- **VI-1/2:** recipes containing 1 or 2 yague subtasks for annotators.
- **VI-3/4:** recipes containing 3 or 4 yague subtasks for annotators.

Methods to Compare:

- **LAM [5]:** state-of-the-art, non-interactive.
- **LAM-rule:** rule-based agent, ask user when prob of prediction is lower than 0.85
- **LAM-sup:** agent with "AskUser" action, trained via SL on pseudo labels.
- **HRL:** our proposed agent trained via RL.
- **HRL-fixedOrder:** HRL with a fixed high-level order to predict to – if – ac – af, following previous work (e.g., [6]).

Metrics:
- C+F Acc: accuracy when all 4 components are correct.
- #Ask: number of clarifying questions.

Simulation Evaluation

Model
- Model C+F Acc $\#\text{Asks}$ Accuracy

<table>
<thead>
<tr>
<th>LAM</th>
<th>C+F Acc</th>
<th>$#\text{Asks}$</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.975</td>
<td>0.006</td>
<td>0.665</td>
</tr>
<tr>
<td>LAM-rule</td>
<td>0.894</td>
<td>0.006</td>
<td>0.765</td>
</tr>
<tr>
<td>LAM-sup</td>
<td>0.939</td>
<td>0.006</td>
<td>0.815</td>
</tr>
</tbody>
</table>

Conclusions
- Interactive > Non-interactive.
- Rule-based agent tends to ask redundant questions.
- HRL vs. HRL-fixedOrder: HRL achieves significantly better performance with fewer questions.

Acknowledgement

[NSF] [Fujitsu]

REFERENCES

[5] Lu et al., 2016. Latest attention for if-then program synthesis. In NIPS.