An Imitation Game for Learning Semantic Parsers from User Interaction

Ziyu Yao†, Yiqi Tang†, Scott Yih*, Huan Sun†, Yu Su†

†The Ohio State University
*Facebook AI Research

EMNLP 2020
Semantic Parsing

- Parsing natural language (NL) to formal meaning representations

- Example: Text-to-SQL semantic parsing

From WikiSQL [Zhong et al., 2017]
The Life Cycle of Semantic Parsers

- Bootstrapping

- Fine-tuning
The Life Cycle of Semantic Parsers

- **Bootstrapping**
 - Collect NL-semantic parse data from annotators
 - Train model to commercial-grade performance (e.g., 95% acc on a test set)
 - Semantic parsers: *data-hungry; expertise required*

- **Fine-tuning**
The Life Cycle of Semantic Parsers

- **Bootstrapping**
 - Collect NL-semantic parse data from annotators
 - Train model to commercial-grade performance (e.g., 95% acc on a test set)
 - Semantic parsers: *data-hungry; expertise required*

- **Fine-tuning**
 - After deployment
 - *Continually* analyze usage and collect new training data for emerging user needs
The Life Cycle of Semantic Parsers

- **Bootstrapping**
 - Collect NL-semantic parse data from annotators
 - Train model to commercial-grade performance (e.g., 95% acc on a test set)
 - Semantic parsers: data-hungry; expertise required

- **Fine-tuning**
 - After deployment
 - Continually analyze usage and collect new training data for emerging user needs

PLUS: privacy risks when exposing user data to external developers
This Work

- Learning semantic parsers with human users in the loop
This Work

- Learning semantic parsers with human users in the loop
 - Semantic parser as an intelligent agent:
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs
This Work

- Learning semantic parsers with human users in the loop
 - Semantic parser as an intelligent agent:
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs
 - reduced bootstrapping & fine-tuning cost
This Work

- Learning semantic parsers with human users in the loop
 - **Semantic parser as an intelligent agent:**
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs
 - **reduced bootstrapping & fine-tuning cost**
 - **User:**
 - answer questions covered by their background knowledge
 - get to know more about the parsing system => more trust
This Work

- Learning semantic parsers with human users in the loop
 - **Semantic parser as an intelligent agent:**
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs **reduced bootstrapping & fine-tuning cost**
 - **User:**
 - answer questions covered by their background knowledge
 - get to know more about the parsing system => more trust **reduced privacy risks**
MISP-NEIL

An interactive system that continually trains a semantic parser from fine-grained user interaction after deployment.
Q: How many schools or teams had jalen rose?

What condition does "jalen rose" imply?
(agent uncertainty)

Does the system need to consider any conditions about the table attribute "School/Club Team"?
(agent-initiative conversation)

No.

I'm confused. 😞 Please help me out! Should I consider conditions about any of the following table attributes?
(1) "Player" (2) "Nationality" (3) "Position" (4) None of the above options

(1) "Player".

Thank you! Query result: 1. Executed SQL query:

```
SELECT COUNT(School/Club Team)
WHERE Player = jalen rose
```
Q: How many schools or teams had jalen rose?

What condition does "jalen rose" imply?
(agents uncertainty)

Does the system need to consider any conditions about the table attribute "School/Club Team"?
(agent-initiative conversation)

No.

I'm confused. Please help me out! Should I consider conditions about any of the following table attributes?
(1) "Player" (2) "Nationality" (3) "Position" (4) None of the above options

(1) "Player".

Thank you! Query result: 1. Executed SQL query:
SELECT COUNT(School/Club Team) WHERE Player = jalen rose

Question: "How many schools or teams had jalen rose?"

SQL query:
SELECT COUNT(School/Club Team) WHERE School/Club Team ... ❌
SELECT COUNT(School/Club Team) WHERE Player ...

Feedback Collection

Model Retraining
Outline

- Introduction

- MISP-NEIL architecture
 - Interactive semantic parsing with MISP
 - **NEIL**: aNnotation-Efficient Imitation Learning (with theoretical analysis)

- Experiments

- Future work
Interactive Semantic Parsing

- A recent idea of involving system-user interaction to improve semantic parsing
Interactive Semantic Parsing

- A recent idea of involving system-user interaction to improve semantic parsing

asking for missing info [Yao et al., 2019a]
Interactive Semantic Parsing

- A recent idea of involving system-user interaction to improve semantic parsing

asking for missing info [Yao et al., 2019a]

disambiguation [Semantic Machines 2020]
Interactive Semantic Parsing

- A recent idea of involving system-user interaction to improve semantic parsing

asking for missing info [Yao et al., 2019a]

User: Can you create a meeting with Megan right before that starts?

createEvent(EventSpec(
 end=start(refer(Constraint[Event]())),
 attendee=PersonSpec(name='Megan'))
)

Agent: Which person named Megan did you mean?

User: Megan Bowen.

disambiguation [Semantic Machines 2020]

post correction [Elgohary et al., 2020]
Interactive Semantic Parsing

- A recent idea of involving system-user interaction to improve semantic parsing

asking for missing info [Yao et al., 2019a]

User: Can you create a meeting with Megan right before that starts?

createEvent(EventSpec(
 end=start(refer(Constraint[Event]())),
 attendee=PersonSpec(name='Megan')
))

Agent: Which person named Megan did you mean?

User: Megan Bowen.

disambiguation [Semantic Machines 2020]

Find all the locations whose names contain the word "film"

finding the Address of Locations table for which Location_Name contains "film"

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>770 Edd Lane Apt. 098</td>
</tr>
<tr>
<td>14034 Kohler Drive</td>
</tr>
</tbody>
</table>

post correction [Elgohary et al., 2020]

User post edit via GUI [Su et al., 2018]
Interactive Semantic Parsing

- **MISP** *(Model-based Interactive Semantic Parser)* [Yao et al., 2019b]
 - A general, unified framework
 - **Generalization:**
 - can be used with various semantic parser architectures & logical forms
 - **User-friendly:**
 - fine-grained natural language questions (generally covered by user background knowledge)
Interactive Semantic Parsing

- **MISP** (Model-based Interactive Semantic Parser) [Yao et al., 2019b]
 - A general, unified framework
 - Generalization:
 - can be used with various semantic parser architectures & logical forms
 - User-friendly:
 - fine-grained natural language questions (generally covered by user background knowledge)

Please refer to [Yao et al., 2019b] for more details.
Open source: https://github.com/sunlab-osu/MISP
Outline

- Introduction
- MISP-NEIL architecture
 - Interactive semantic parsing with MISP
 - **NEIL**: aNnotation-Efficient Imitation Learning (with theoretical analysis)
- Experiments
- Future work
Recall: user feedback in MISP-NEIL

Question: "How many schools or teams had jalen rose?"

SQL query:
SELECT COUNT(School/Club Team) WHERE School/Club Team ...

SELECT COUNT(School/Club Team) WHERE Player ...

predicting the table attribute “Player” after generating the keyword “WHERE” (called “user demonstrations”)

Feedback Collection
NEIL: aNnotation-Efficient Imitation Learning

- Imitation learning: training the semantic parser to *imitate* “user demonstrations” collected during interaction
NEIL: aNnotation-Efficient Imitation Learning

- Imitation learning: training the semantic parser to *imitate* “user demonstrations” collected during interaction

- “annotation-efficient”
 - The agent needs to avoid asking too many questions to the user
 - **Challenge**: *sparse* user demonstrations
NEIL: annotation-Efficient Imitation Learning

- Imitation learning: training the semantic parser to *imitate* “user demonstrations” collected during interaction

- “annotation-efficient”
 - The agent needs to avoid asking too many questions to the user
 - **Challenge:** *sparse* user demonstrations
 - **Solution:** collecting both *user demonstrations* and *agent-confident actions* (without user validation) as training labels
NEIL: aNnotation-Efficient Imitation Learning

- **A DAGGER-liked algorithm** [Ross et al., 2011]
 - Iteratively aggregate demonstrations as new training labels and retrain the parser (called “policy”)

For each iteration $i=1$ to N:
- Receive user questions $\{q\}$;
- New training labels \leftarrow Parse&Collect(question q, policy$_i$);
- Aggregate new training labels;
- Train policy$_{i+1}$ on aggregated training data (including the pre-training data).
- Return the best policy$_i$ on validation.
A DAgGER-liked algorithm [Ross et al., 2011]

- Iteratively aggregate demonstrations as new training labels and retrain the parser (called “policy”)

For each iteration $i=1$ to N:

- Receive user questions $\{q\}$;
- New training labels ← Parse&Collect(question q, policy$_i$);
- Aggregate new training labels;
- Train policy_{i+1} on aggregated training data (including the pre-training data).
- Return the best policy_i on validation.
A DAGGER-liked algorithm [Ross et al., 2011]

Iteratively aggregate demonstrations as new training labels and retrain the parser (called “policy”)

For each iteration $i=1$ to N:

1. Receive user questions $\{q\}$;
2. New training labels \leftarrow Parse&Collect(question q, $policy_i$);
3. Aggregate new training labels;
4. Train $policy_{i+1}$ on aggregated training data (including the pre-training data).
5. Return the best $policy_i$ on validation.

including user-demonstrated and agent-confident actions
A DAGGER-liked algorithm [Ross et al., 2011]

Iteratively aggregate demonstrations as new training labels and retrain the parser (called “policy”)

For each iteration $i=1$ to N:

Receive user questions $\{q\}$;

New training labels \leftarrow Parse&Collect(question q, policy$_i$);

Aggregate new training labels;

Train policy$_{i+1}$ on aggregated training data (including the pre-training data).

Return the best policy$_i$ on validation.
A DAGGER-liked algorithm [Ross et al., 2011]

- Iteratively aggregate demonstrations as new training labels and retrain the parser (called “policy”)

For each iteration $i=1$ to N:
- Receive user questions $\{q\}$;
- New training labels \leftarrow Parse&Collect(q, policy$_i$);
- Aggregate new training labels;
- Train policy$_{i+1}$ on aggregated training data (including the pre-training data).

Return the best policy$_i$ on validation.
Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. *fully-supervised* approach
Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. *fully-supervised* approach

- A new “cost function” for semantic parsing tasks
 - smaller cost, better algorithm
Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. fully-supervised approach

- A new “cost function” for semantic parsing tasks
 - smaller cost, better algorithm

Theorem 5.1. For supervised approach, let $\epsilon_N = \min_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi^*}}[l(s, \pi)]$, then $J(\hat{\pi}_{sup}) = T\epsilon_N$.

Theorem 5.2. For the proposed NEIL algorithm, if N is $\tilde{O}(T)$, there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t. $J(\hat{\pi}) \leq T[\epsilon_N + \frac{2T\ell_{max}}{N} \sum_{i=1}^{N} \epsilon_i] + O(1)$.

e_i: probability of confident but wrong actions
Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. fully-supervised approach

- A new "cost function" for semantic parsing tasks
 - smaller cost, better algorithm

Key factors to reduce NEIL’s performance loss:

1. more accurate confidence estimation;

 => decision probability with a high confidence threshold

Theorem 5.2. For the proposed NEIL algorithm, if N is $\tilde{O}(T)$, there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t.

$$J(\hat{\pi}) \leq T[\epsilon_N + \frac{2T\ell_{\max}}{N} \sum_{i=1}^{N} e_i] + O(1).$$

e_i: probability of confident but wrong actions
Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. fully-supervised approach

- A new "cost function" for semantic parsing tasks
 - smaller cost, better algorithm

Key factors to reduce NEIL’s performance loss:

1. more accurate confidence estimation;
 => decision probability with a high confidence threshold

2. moderate policy initialization.
 => verify in experiments

Theorem 5.2. For the proposed NEIL algorithm, if N is $\tilde{O}(T)$, there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t.

$$J(\hat{\pi}) \leq T \left[\epsilon_N + \frac{2T \ell_{\text{max}}}{N} \sum_{i=1}^{N} e_i \right] + O(1).$$

e_i: probability of confident but wrong actions
Outline

- Introduction
- MISP-NEIL architecture
 - Interactive semantic parsing with MISP
 - NEIL: a_Nnotation-Efficient Imitation Learning (with theoretical analysis)
- Experiments
- Future work
Experimental Setup

- **Benchmark dataset:** WikiSQL [Zhong et al., 2017]

- **Base semantic parser:** SQLova [Hwang et al., 2019]

- **Three parser initialization settings**
 - using 10% (around 5K), 5% and 1% (around 500) of the training data

- **Iterative parser learning**
 - In each iteration, simulate 1K (unlabeled) user questions
 - Simulated user interaction/feedback
Comparison on Annotation Efficiency

- Parser's test-time accuracy when each system has consumed a certain number of annotations in training
Comparison on Annotation Efficiency

- Parser’s test-time accuracy when each system has consumed a certain number of annotations in training

![Graphs showing comparison on annotation efficiency](image)

Fully-supervised approach
Comparison on Annotation Efficiency

- Parser’s test-time accuracy when each system has consumed a certain number of annotations in training

![Graphs showing comparison on annotation efficiency](image)

- Comparison on Annotation Efficiency
- Our system with its skyline variant
Comparison on Annotation Efficiency

- Parser’s test-time accuracy when each system has consumed a certain number of annotations in training

![Graphs showing annotation efficiency for different initialization settings.](image.png)

- **10% Initialization Setting**
- **5% Initialization Setting**
- **1% Initialization Setting**

Using no human feedback
Comparison on Annotation Efficiency

- Parser’s test-time accuracy when each system has consumed a certain number of annotations in training

Observation: MISP-NEIL enjoys the best annotation efficiency (PLUS collecting annotations from users rather than experts)
Comparison on Training Effectiveness

- Parser’s test-time accuracy when each system has trained the parser for the same number of iterations
Comparison on Training Effectiveness

- Parser’s test-time accuracy when each system has trained the parser for the same number of iterations

(1) When the parser is moderately initialized (10%/5% setting), MISP-NEIL is comparable with Full Expert (only 2% Acc loss) while being annotation-efficient; (2) MISP-NEIL also outperforms other learning-from-user systems.
Experimental Results on Spider

Please check out our paper for more details
Outline

- Introduction
- MISP-NEIL architecture
 - Interactive semantic parsing with MISP
 - NEIL: a Notation-Efficient Imitation Learning (with theoretical analysis)
- Experiments
- Future work
Future Work

- Large-scale user study
 - MISP is shown helpful for end-users in a small user test [Yao et al., 2019]
 - We aim at a more realistic test with crowd workers

- More accurate uncertainty estimation
 - Neural semantic parsers tend to be overconfident
 - Possible solutions: neural network calibration [Guo et al., 2017], using machine learning modules [Zhao et al., 2017; Fang et al., 2017]

- NEIL for saving annotations for low-resource tasks
Acknowledgement

Code is available at: https://github.com/sunlab-osu/MISP

Thank you!