Interactive Semantic Parsing for If-Then Recipes via Hierarchical Reinforcement Learning

Ziyu Yao

The Ohio State University

In collaboration with: Xiujun Li (MSR, UW), Jianfeng Gao (MSR), Brian Sadler (ARL), Huan Sun (OSU)

Outline

Background

Interactive Semantic Parser

- Why
- How
- Experiments
- Conclusion

Outline

Background

Interactive Semantic Parser

- Why
- **How**
- Experiments
- Conclusion

Semantic Parsing

General task

To map natural language to formal domainspecific meaning representations.

Semantic Parsing

General task

To map natural language to formal domainspecific meaning representations.

Example

- Knowledge based question answering
 - NL Question => Logical form in lambda-DCS (or, SPARQL/SQL query)

"Find people who died from lung cancer before 1960 and whose parent died for the same reason"

$$\begin{split} \lambda x. \exists y. \exists z. \texttt{type}(x, \texttt{DeceasedPerson}) \\ & \land \texttt{type}(y, \texttt{DeceasedPerson}) \\ & \land \texttt{type}(z, \texttt{Datetime}) \land \texttt{parents}(x, y) \\ & \land \texttt{causeOfDeath}(x, \texttt{LungCancer}) \\ & \land \texttt{causeOfDeath}(y, \texttt{LungCancer}) \\ & \land \texttt{dateOfDeath}(x, z) \land < (z, \texttt{1960}). \end{split}$$

(Su et al., 2016)

Semantic Parsing

General task

To map natural language to formal domainspecific meaning representations.

Example

- General-purpose program synthesis
 - NL question => Python program

"how to sort my_list in descending order in python?"

sorted(my_list, reverse=True)

- If-Then program: A conditional statement
 - Informally known as "If <u>this</u>, then <u>that</u>"
 - Whenever the conditions of the trigger (i.e., "<u>this</u>") are satisfied, the action (i.e., "<u>that</u>") is performed
 - e.g., "Turn on my lights when I arrive home" (home automation), "tell me if the door opens" (home security), etc.

- If-Then program: A conditional statement
 Informally known as "If <u>this</u>, then <u>that</u>"
- Providing services that allow end users to connect and integrate their web applications

- If-Then program: A conditional statement
 Informally known as "If <u>this</u>, then <u>that</u>"
- Formally, an If-Then recipe:
 - A natural language description
 - 4 components in the program
 - Trigger channel
 - Trigger function
 - Action channel
 - Action function

Example

NL description

"Create a link note on Evernote for my liked tweets"

- If-Then program
 - Trigger channel: Twitter
 - Trigger function: *New liked tweet by you*
 - Action channel: Evernote
 - Action function: Create a link note

Outline

Background

Interactive Semantic Parser

- Why
- How
- Experiments
- Conclusion

Previous Work

Semantic parsing in one shot:

- User gives an NL description, and system responds with a program
- (Quirk et al., 2015; Liu et al., 2016; Dong and Lapata, 2016)

Challenges

 Natural language descriptions can be ambiguous, and contain incomplete information

Example:

- NL description: "<u>record to evernote</u>"
- Ground truth: [Twitter(trigger channel), New liked tweet by you (trigger function), Evernote (action channel), Create a link note (action function)]

Challenges

 Natural language descriptions can be ambiguous, and contain incomplete information

Example:

- NL description: "<u>record to evernote</u>"
- Ground truth: [Twitter(trigger channel), New liked tweet by you (trigger function), Evernote (action channel), Create a link note (action function)]
- Other possible interpretations: [Instagram, You like a photo, Evernote, Create a note], ...

Challenges

 Natural language descriptions can be ambiguous, and contain incomplete information

 In the widely used dataset (Quirk et al., 2015), 80% of ~4K human evaluated descriptions are considered ambiguous to some degree.

Challenges

 Natural language descriptions can be ambiguous, and contain incomplete information

 Quite difficult for an automated parser to produce a correct program, <u>if only based on</u> <u>an ambiguous description</u>.

Interactive Semantic Parsing

An intelligent agent can ask user questions for clarification to improve parsing accuracy.

> User: "record to evernote" HRL agent: "Which event triggers the action?" User: "If I like a tweet" HRL agent: "Which event results from the trigger?" User: "Create a note with link" Agent Prediction: [tc: Twitter, tf: New liked tweet by you, ac: Evernote, af: Create a link note]

Interactive Semantic Parsing

An intelligent agent can ask user questions for clarification to improve parsing accuracy.

Goal

 Improve parsing accuracy, but with as few questions as possible.

Outline

Background

Interactive Semantic Parser

• Why

How

Experiments

Conclusion

Interactive Semantic Parsing

Challenges

- Lack of supervision on when system should ask a question
 - The only feedback is whether a synthesized program is correct or not.
- How to optimize the parsing accuracy and number of asks at the same time?

Previous Rule-based Agents

For each component, build a classifier model

If the prediction of the current component is lower than a threshold, ask user a question.

e.g., P(Trigger channel = *Instagram*) = 0.3 < 0.4 (threshold), ask user a question* like "which channel to trigger?"

*Question is formulated using templates.

(Chaurasia and Mooney, 2017)

Our Formulation

Treat predicting the 4 components as 4 subtasks

Hierarchical decision making process
 At the high level, decide which subtask to work on

 At the low level, for the current selected subtask, decide whether to make a prediction or to ask user a question, based on the current status

Hierarchical Decision Making

 In a Hierarchical Reinforcement Learning framework (Sutton et al., 1999)

s: state information.

 g_t : the subtask to work on from time step t

 a_t : the low-level action at time step t when working on subtask g_t .

- High-level action space
 - 4 subtasks
 - Each representing predicting one component, e.g., trigger channel
- Low-level action space
 - For each component selected at the high level, e.g., trigger channel,

{all possible trigger channels} U {AskUser}

States

A state s consists of 9 items:

- The initial recipe description I
- The boolean indicator b_i (i = 1~4) for each subtask, showing whether each subtask has been predicted or not
- The received user answer d_i ($i = 1 \sim 4$) for each subtask

Rewards

Low level

$$r_{g_t}^l(s_t, a_t) = \begin{cases} 1 & \text{if } a_t = \ell_{g_t} \\ -\beta & \text{if } a_t = \text{AskUser} \\ -1 & \text{otherwise} \end{cases}$$

* ℓ_{g_t} :: ground-truth label for subtask $\beta \epsilon$ [0,1): penalty for asking the user

High level

$$r^{h}(s_{t}, g_{t}) = \begin{cases} \sum_{k=t}^{t+N} r^{l}_{g_{t}}(s_{k}, a_{k}) & \text{for eligible } t \\ 0 & \text{otherwise} \end{cases}$$

*eligible *t*: at the beginning of a subtask or when a subtask terminates

Low-level Policy Function Design

The low-level policy function for subtask st_i:

- $v_i = (1 w_d)v_I + w_d v_{d_i}$ represents the information integrated from both the recipe description and the user answer, traded off by weight w_d .
- s^l_{sti}: the *low-level* state vector of subtask st_i, i.e.,

 $s_{st_i}^l = \tanh(W_{c_i}[s_{st_1}^l; \dots; s_{st_{i-1}}^l; v_i; s_{st_{i+1}}^l; \dots; s_{st_4}^l])$

Low-level policy value (probability distribution over action space):

 $\pi_{st_i}^l(a;s) = softmax(W_{st_i}^l s_{st_i}^l)$

Low-level Policy Function Design

The low-level policy function for subtask st_i:

- $v_i = (1 w_d)v_I + w_d v_{d_i}$ represents the information integrated from both the recipe description and the user answer, traded off by weight w_d .
- Low-level state vector of subtask st_i:

$$S_{st_{i}}^{l} = \tanh(W_{c_{i}}[s_{st_{1}}^{l}; \dots; s_{st_{i-1}}^{l}; v_{i}; s_{st_{i+1}}^{l}; \dots; s_{st_{4}}^{l}])$$

Low-level policy value (probability distribution over action space):

$$\pi_{st_i}^l(a;s) = softmax(W_{st_i}^l s_{st_i}^l)$$

High-level Policy Function Design

High-level policy decides which subtask to work on:

- s^l_{sti}: the state vector for subtask
 st_i (i = 1~4)
- *b_i*: a boolean value indicating whether subtask *st_i* is completed
- *High-level* state vector:

 $s^h = \tanh(W_c[s^l_{st_1}; b_1; \ldots; s^l_{st_4}; b_4])$

Policy value (probability distribution over 4 subtasks):
 π^h(g; s) = softmax(W^hs^h)

Hierarchical Policy Learning

- Learned by the REINFORCE algorithm (Williams, 1992)
- For each policy, perform gradient ascent to maximize the future rewards

User Simulator

- Why user simulator is needed?
 Save real human efforts in training
- Simulating user answers when the agent asks clarification questions about channels and functions.

User Simulator

- Simulating user answers for channels by channel names, e.g., "Gmail".
- Simulating user answers for functions by:
 - Revised function name / definition from IFTTT.com and their paraphrases
 - e.g., "This Trigger fires every time you like a tweet"
 - Extractions from user data
 - e.g., extracting X from recipe description "If X then Y" as a user answer when asked about the corresponding trigger function

Outline

- Background
- Interactive Semantic Parser
 - Why
 - How
- Experiments
- Conclusion

Experiments: Dataset

Training and validation

 291,285 pairs of <NL description, If-Then program> (Ur et al., 2016)

Testing

3,870 pairs (Quirk et al., 2015)

Each description manually annotated by 5 AMTurkers

Test Data	CI	VI-1/2	VI-3/4	- Total
Size	727	1,271	1,872	3,870
(%)	(18.79)	(32.84)	(48.37)	(100)

 LAM: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 One close if a components

One classifier for each of 4 components

- LAM-rule
- LAM-sup

HRL (our model) HRL-fixedOrder (fixing the high-level subtask order)

- LAM: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 - One classifier for each of 4 components

LAM-rule

- By running the trained LAM.
- Prediction probability < threshold (0.85) ⇒ Ask.</p>
- Concatenating the received user answer with the received description as input for the next time step.

LAM: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot

One classifier for each of 4 components

- LAM-rule
- LAM-sup
 - LAM with "user answer understanding" module
 - Input: recipe description, user answer (if any).
 - Output: predict "AskUser" for asking questions, or predict the channel/function value.

LAM: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot

One classifier for each of 4 components

- LAM-rule
- LAM-sup
 - Synthesized training data based on the performance of LAM-rule
 - e.g., completing with asking users:
 - <recipe description, $\emptyset >$ (*) "AskUser"
 - <recipe description, received user answer>

 LAM: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 One close if a components

One classifier for each of 4 components

- LAM-rule
- LAM-sup

HRL (our model) HRL-fixedOrder (fixing the high-level subtask order)

Simulation Evaluation on Test Set

Model	CI		VI-1/2		VI-3/4	
WIOUCI	C+F	#Asks	C+F	#Asks	C+F	#Asks
	Acc		Acc		Acc	
LAM	0.801	0	0.436	0	0.166	0
LAM-rule	0.897	1.433	0.743	2.826	0.721	5.568
LAM-sup	0.894	0.684	0.803	1.482	0.780	2.921
HRL-fixedOrder	0.950	1.522	0.855	1.958	0.871	2.777
HRL	0.949	1.226*	0.888*	1.748*	0.878 *	2.615*

- Simulation Evaluation: User answers are sampled from the simulated answer pool.
- C+F Accuracy: when all the 4 subtasks get correct predictions.
- #Asks: averaged number of questions for completing the entire task.
- * denotes significant different in mean between HRL vs. HRL-fixedOrder.

Simulation Evaluation on Test Set

Model	CI		VI-1/2		VI-3/4	
WIOUCI	C+F	#Asks	C+F	#Asks	C+F	#Asks
	Acc		Acc		Acc	
LAM	0.801	0	0.436	0	0.166	0
LAM-rule	0.897	1.433	0.743	2.826	0.721	5.568
LAM-sup	0.894	0.684	0.803	1.482	0.780	2.921
HRL-fixedOrder	0.950	1.522	0.855	1.958	0.871	2.777
HRL	0.949	1.226*	0.888*	1.748*	0.878*	2.615*

- 1. All interactive agents perform better than the non-interactive LAM.
- 2. LAM-rule simply asks redundant questions.
- 3. HRL-based agents outperform other agents by:
 - 5% on CI, 8%~15% on VI (taking up 80% of the dataset).
 - Reasonable/minimal number of questions.
- 4. HRL demands significantly less questions to humans.

Human Evaluation on VI-3/4

- The most challenging VI-3/4 dataset
- Two volunteer students familiar with IFTTT
- Each session:
 - One If-Then recipe sampled from VI-3/4
 - with official descriptions of each component
 - One agent sampled from {LAM-rule, LAM-sup, HRL, HRLfixedOrder}
 - Unknown to the participant
- The participant is encouraged to answer in their own words when being asked
 - For better user experience: Each agent is limited to ask at most 1 question for each component

Human Evaluation on VI-3/4

- In total, collected 496 conversations
- Note:
 - LAM's result is based on the 496 recipes
 - * denote significant in mean between HRL-based agents and {LAM-rule, LAM-sup}

Model	C+F Acc	#Asks
LAM	0.206	0
LAM-rule	0.518	2.781
LAM-sup	0.433	2.614
HRL-fixedOrder	0.581	2.306*
HRL	0.634*	2.221*

Human Evaluation on VI-3/4

- 1. All agents' performance is not as good as in Simulation Evaluation
 - Mainly due to the high language complexity in real user answers
- The two HRL-based agents outperform LAM-rule/sup by 6%~20% Acc, with *fewer* questions
- 3. HRL vs. HRL-fixedOrder: better Acc and fewer #Asks

Model	C+F Acc	#Asks
LAM	0.206	0
LAM-rule	0.518	2.781
LAM-sup	0.433	2.614
HRL-fixedOrder	0.581	2.306*
HRL	0.634*	2.221*

Outline

- Background
- Interactive Semantic Parser
 - Why
 - **How**
- Experiments
- Conclusion

Conclusion

- Formulated interactive semantic parsing for If-Then recipes with HRL
- Improved parsing accuracy without asking user many questions
- Generalizable to other semantic parsing tasks (beyond If-Then recipes) with humanmachine interaction/collaboration

Acknowledgement

Thanks! Questions?