Interactive Semantic Parsing for If-Then Recipes THE OHIO STATE via Hierarchical Reinforcement Learning UNIVERSITY

Ziyu Yao¹, Xiujun Li^{2,3}, Jianfeng Gao², Brian Sadler⁴, Huan Sun¹

¹The Ohio State University, ²Microsoft Research, ³University of Washington, ⁴U.S. Army Research Lab

INTRODUCTION

If-Then Recipes/Programs

A conditional statement of "If This, Then That": whenever the *trigger* condition ("This") is satisfied, the action ("That") will be performed.

4 Components:

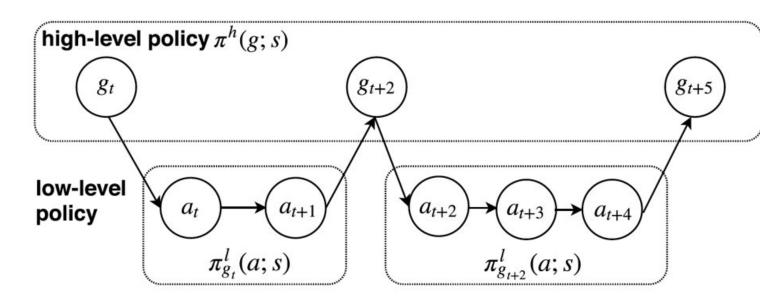
Trigger Channel ("tc"), Trigger Function ("tf"), Action Channel ("ac"), Action Function ("af").

Semantic Parsing for If-Then Recipes

Parsing a natural language (NL) description to a corresponding If-Then recipe.

HIERARCHICAL RL (HRL)

Hierarchical Policy [2]



- \Leftrightarrow High-level policy selects a subtask g_t (i.e., completing one of the 4 components) to work on.
- Low level policy completes each subtask by taking actions to either make a prediction or ask user.

EXPERIMENTS

Experiment Setup

Dataset:

- Training: 291,285 <NL description, Recipe> pairs from [4].
- Testing set collected & annotated by [1]:

Test Data	CI	V	Total	
Test Data	CI	VI-1/2	VI-3/4	Total
Size	727	1,271	1,872	3,870
(%)	(18.79)	(32.84)	(48.37)	(100)

- **CI**: recipes with descriptions <u>c</u>lear in all 4 subtasks for annotators.
- **VI-1/2**: recipes containing 1 or 2 vague \bullet subtasks for annotators.

Example:

"Create a link note on Evernote for my liked tweets"

[tc: Twitter, tf: New liked tweet by you, ac: Evernote, af: Create a link note]

Application:

Widely adopted for Task/Routine Automation and **Smart Home**: "Text me if the door is unlocked", "Send me the weather report every day at 7AM", etc.

MOTIVATION

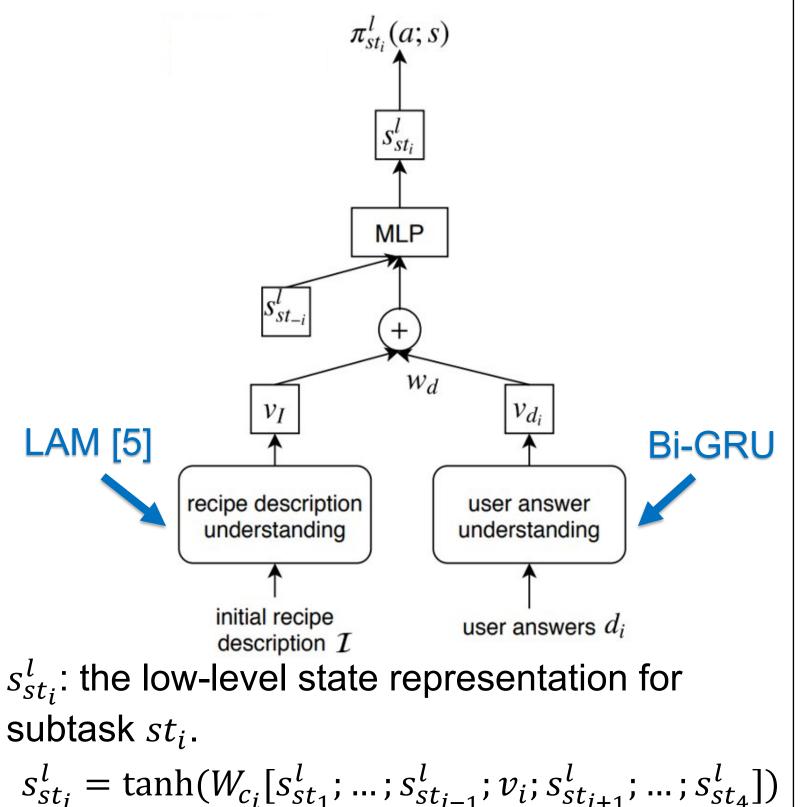
Description Ambiguity

An NL description can be *ambiguous* or contain *incomplete* information.

User: "record to evernote" Ground-truth recipe: [tc: Twitter, tf: New liked tweet by you, ac: Evernote, af: Create a link notel (Liu et al. 2016): [tc: Phone Call, tf: Leave IFTTT any voicemail, ac: Evernote, af: Append to note]

- Based on ~4K recipes collected from real users [1], 80% of recipe descriptions are ambiguous!
- ✤ May fail a well-trained semantic parser.

Semantic parsing = a sequence of high/lowlevel decisions.



We define one policy for *each* subtask.

• VI-3/4: recipes containing 3 or 4 vague subtasks for annotators.

User Simulation:

We resort to *user simulator* to train the agent, with simulated user answers extracted from training set using templates.

Methods to Compare:

- ✤ LAM [5]: state-of-the-art, non-interactive.
- ✤ LAM-rule: rule-based agent, ask user when prob of prediction is lower than 0.85
- ✤ LAM-sup: agent with "AskUser" action, trained via SL on pseudo labels.
- ✤ HRL: our proposed agent trained via RL.
- ✤ HRL-fixedOrder: HRL with a fixed highlevel order to predict tc - tf - ac - af, following previous work (e.g., [6]).

Metrics:

- C+F Acc: accuracy when all 4 components are correct.
- #Ask: number of clarifying questions.

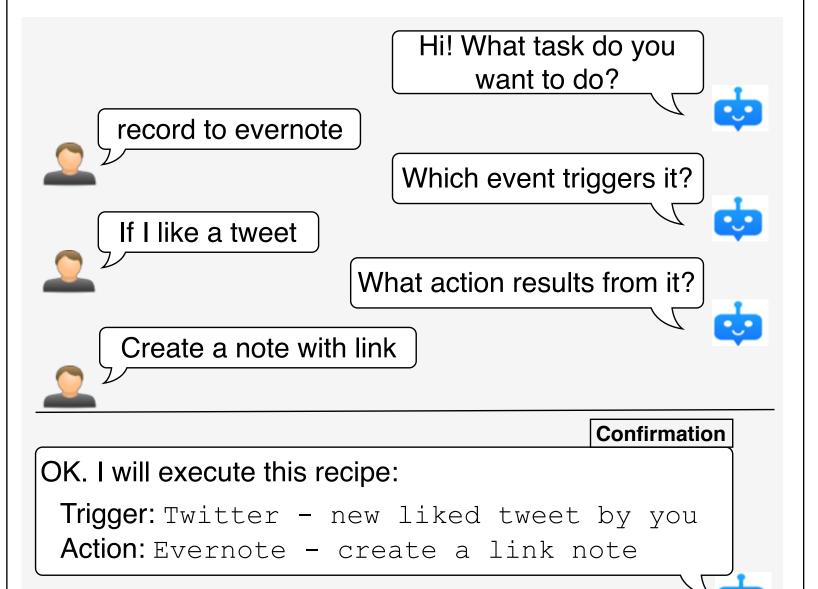
Simulation Evaluation

Model	CI		VI-1/2		VI- 3/4	
WIOUCI	C+F	#Asks	C+F	#Asks	C+F	#Asks
	Acc		Acc		Acc	
LAM	0.801	0	0.436	0	0.166	0
LAM-rule	0.897	1.433	0.743	2.826	0.721	5.568
LAM-sup	0.894	0.684	0.803	1.482	0.780	2.921
HRL-fixedOrder	0.950	1.522	0.855	1.958	0.871	2.777
HRL	0.949	1.226*	0.888*	1.748*	0.878 *	2.615*

INTERACTIVE SEMANTIC PARSING

Our Solution: Ask Human Questions

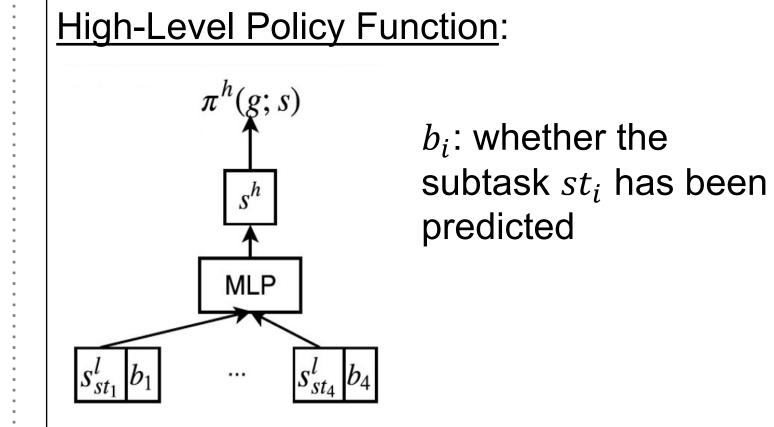
An intelligent agent can ask clarifying questions to resolve description ambiguity.



User answers (in NL) are received and utilized for the agent's prediction.

Our Aim:

Improve parsing accuracy with minimal questions, without supervision on when/what to ask.



Training by Rewarding

Low-level reward (when taking action a_t for subtask g_t):

$$r_{g_t}^l(s_t, a_t) = \begin{cases} 1 & \text{if } a_t = \ell_{g_t} \\ -\beta & \text{if } a_t = \text{AskUser} \\ -1 & \text{otherwise} \end{cases}$$

 l_{g_t} : true label of subtask g_t . $-\beta$ is the penalty for asking questions.

High-level reward for g_t = accumulative lowlevel reward for completing g_t .

Optimization:

Maximize accumulative high/low-level reward via REINFORCE [3].

(when interacting with user simulator)

Human Evaluation

- Interact with real humans.
- Collecting 496 conversations on VI-3/4.

Model	C+F Acc	#Asks
LAM	0.206	0
LAM-rule	0.518	2.781
LAM-sup	0.433	2.614
HRL-fixedOrder	0.581	2.306*
HRL	0.634*	2.221*

Conclusions

- Interactive > Non-interactive. \checkmark
- Rule-based agent tends to ask redundant \checkmark questions.
- HRL vs. HRL-fixedOrder: HRL achieves \checkmark significantly better performance with fewer questions.

```
[code available online]
```

REFERENCES

[1] Quirk, C.; Mooney, R. J.; and Galley, M. 2015. Language to code: Learning semantic parsers for if-this-then-that recipes. In ACL. [2] Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence 112(1-2):181-211. [3] Williams, R. J. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Reinforcement Learning. [4] Ur et al., 2016. Triggeraction programming in the wild: An analysis of 200,000 ifttt recipes. In CHI. [5] Liu et al., 2016. Latent attention for if-then program synthesis. In NIPS.

[6] Beltagy, I., and Quirk, C. 2016. Improved semantic parsers for if-then statements. In ACL, volume 1, 726–736.

Acknowledgement

