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Natural Language Interfaces (NLIs)

Introduction
2

Natural Language Interface

Turn on the light in 
living room before 

sunset!

Can you make an 
appointment to refill the 

medicine?

How does COVID-19 
spread among people?

…when they cough, sneeze, 
speak, sing or breathe heavily.



Natural Language Interfaces (NLIs) in History

Introduction
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ELIZA (1966) SHRDLU (1971) Ask Jeeves (1997)

NLI to Database (NLIDB)

LUNAR 
(1972)

PLANE 
(1978)

CHAT-80 
(1982)

ASK 
(1983)

CHILL 
(1996)

PCCG 
(2005)

DCS 
(2011)

Learning 
started

SQLova 
(2019)

RatSQL 
(2019)

Contextual embedding 
(e.g., BERT) started

Seq2Seq w 
Attention (2016)

WikiSQL 
(2017)

Neural net 
started

Spider 
(2018)



Large Language Models (LLMs)

4Image source: Zhao et al. "A survey of large language models." arXiv preprint arXiv:2303.18223.

Introduction

https://huggingface.co/spaces/
HuggingFaceH4/

open_llm_leaderboard 

5000+ LLMs!

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


NLIs in the Age of Large Language Models

Introduction
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Paradigm shift: unified architecture, task generalization, instruction following

UnifiedSKG (Xie…Yao et al., 2022)

+ Plugins

LLMs as unified, 
conversational NLIs



NLIs in the Age of Large Language Models

6
Introduction

Paradigm shift: unified architecture, task generalization, instruction following 
↪ Paradigm shift in how humans interact with NLIs

No interaction,

Task-agnostic, multi-turn interactions 
& Broader application areas

(Li et al., 2017)
Do LLMs interact well with humans?
How to deal with the $ cost of 
frequent queries to LLMs?or task-specific interaction



This Talk: Building NLIs in the Age of LLMs
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Topic 1: Modeling Language Feedback in 
Human-NLI Interaction  

(Task: Text-to-Code Generation)

Introduction

Topic 2: Saving the Monetary Cost of 
LLM API Usage 

(Task: Arithmetic/Symbolic/etc. Reasoning)



This Talk: Building NLIs in the Age of LLMs
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Topic 1: Modeling Language Feedback in 
Human-NLI Interaction  

(Task: Text-to-Code Generation)

Introduction

Topic 2: Saving the Monetary Cost of 
LLM API Usage 

(Task: Arithmetic/Symbolic/etc. Reasoning)



Feedback-driven Human-NLI Interaction

● Humans naturally provide feedback while interacting with NLIs 
○ e.g., “You should not do this; the result is not what I asked for!” 

● Gap: existing NLIs are rarely evaluated with human interaction 
○ Need more practical assessments, i.e., when NLIs can interact with humans 
○ Feedback understanding and incorporation: not an easy task for LLMs!

9

(Yao et al., 2019)

Underestimate? … or Overestimate?

Human-LLM Interaction via Language Feedback



Semantic Parsing

● Translating a natural language (NL) question/command to its logical meaning 
representation 
○ e.g., NL-to-SQL parsing for database querying 
○ Other applications: robotics (NL-to-LTL), knowledge base query (NL-to-Lambda 

Calculus), AI-assisted programming (NL-to-Python/Java/C/…) 
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Human-LLM Interaction via Language Feedback

In 2017, how many 
women were diagnosed 

with female breast cancer?

SELECT COUNT(*)
FROM US_Cancer_Stats
WHERE Year=2017 AND 
Sex=“Female” AND
Type=“Female Breast”250, 520.

text-to-SQL 
semantic parsing

non-technical user 
(e.g., physician)

https://gis.cdc.gov/Cancer/USCS/DataViz.html
(Zhong et al., 2017; Yu et al., 2018)



● Semantic parsing with humans proving clarification and corrective feedback

Interactive Semantic Parsing/Code Generation

11

(Yao et al., 
2019&20)  
A general 

framework, 
showcased in  
Text-to-SQL

(Yao et al., 
2019) Text-
to-IFTTT

Human-LLM Interaction via Language Feedback

System 
ExplanationUser 

Feedback



● SPLASH dataset by Microsoft Research: text-to-SQL with natural language 
(NL) feedback

Interactive Semantic Parsing/Code Generation

12

(Elgohary et al., 2020)

User’s Corrective 
Feedback in NL

Human-LLM Interaction via Language Feedback

The data bottleneck:  
Costly and model-

dependent feedback 
annotation 

System 
Explanation
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Learning to Simulate Natural Language Feedback for 
Interactive Semantic Parsing

ACL 2023

Hao Yan Saurabh 
Srivastava

Yintao Tai Sida I. Wang Scott Yih Ziyu Yao

Human-LLM Interaction via Language Feedback



Learning to Simulate Natural Language Feedback

● Idea:  
○ Build a simulator with small-scale feedback annotations  
○ Apply the simulator to generate large-scale synthetic feedback for model training

14

Feedback 
Simulator

Initial Question 
& Contextual Info

Incorrect Code  
& Explanation

Correct Code 
(accessible for 
simulation only)

Natural Language 
Feedback

Human-LLM Interaction via Language Feedback



Learning to Simulate Natural Language Feedback

● The importance of task representations 
(“prompt engineering”): 

○ CWQES: Simply include the Correct 
and Wrong code snippets as input. 

○ DQES: Inspired by NL-Edit (Elgohary 
et al. 2021), feed the EDits of revising 
the incorrect code snippet into the 
correct one. 

○ TQES: Verbalize the edits using 
Templates.

15

True & Predicted Logical Form 

Human-LLM Interaction via Language Feedback



Evaluating the Faithfulness of the Simulated Feedback

● Faithfulness: Does the simulated feedback 
precisely reflect the user intent of error 
correction? 
○ Traditional metrics such as BLEU 

(Papineni et al., 2002) cannot measure it 
○ More recent metrics such as BERTScore 

(Zhang et al., 2019) are too generic 

● Our approach: fine-tuning BERTScore with 
contrastive examples 
○ Template feedback as reference

16
Human-LLM Interaction via Language Feedback

(Please refer to details in our paper)



Evaluating the Faithfulness of the Simulated Feedback

17

(Truncated for 
Demonstration)

(Truncated for 
Demonstration)

Human-LLM Interaction via Language Feedback



Example

18
Human-LLM Interaction via Language Feedback

Our evaluator is better than 
BERTScore in capturing differences in 

simulated feedback



Experimental Results

● “Low data” experiment: train a simulator with a small amount of feedback 
annotations, and apply it to synthesize more for model training 
○ Text-to-SQL. Performance on error correction based on feedback. 

19
Human-LLM Interaction via Language Feedback

K% SPLASH

K% SPLASH +  
(100-K)% template feedback
K% SPLASH +  
(100-K)% our simulated feedback



Experimental Results

● “Low data” experiment: train a simulator with a small amount of feedback 
annotations, and apply it to synthesize more for model training 
○ Text-to-SQL. Performance on error correction based on feedback. 

20
Human-LLM Interaction via Language Feedback

K% SPLASH

K% SPLASH +  
(100-K)% template feedback
K% SPLASH +  
(100-K)% our simulated feedback

Takeaway: Simulator is 
promising to augment 

feedback learning.



Discussion
● While we were working on the project (late 2022), ChatGPT came out… 

● Are problems solved with ChatGPT? 
○ If it does, this feedback simulator is not necessary:( 
○ However, NO! Feedback modeling is not trivial even for ChatGPTl 
○ Could be even more challenging with real human users, e.g., humans may not fully 

understand the code explanation

21
Human-LLM Interaction via Language Feedback

Hao Yan Thomas LaToza Ziyu Yao

Work in Progress, 2024



Interactive Code Generation w/ ChatGPT-3.5

● Focus: non-professional programmers who have basic knowledge of 
computation and mathematics but are not professional in programming 

● Very painful for them to interact with vanilla ChatGPT for programming 
○ Users cannot understand or verify complicated code (they are not professional!) 
○ Unstructured, back-and-forth queries for code explanation lead to frustration 

● Experimental tasks: text-to-SQL and Python code generation

22
Human-LLM Interaction via Language Feedback

(Work in Progress)



Text-to-Python

23
Human-LLM Interaction via Language Feedback

LLM-Generated 
Code Explanation

User NL Feedback



User Study Results
● Overall, how does our system help users in programming? 

○ Double the success rate of vanilla ChatGPT-3.5, but still large room for improvement (20% for 
SQL and 50% for Python) 

● Can users identify potential problems from our code explanation? 
○ Yes but not always, for ~50% (SQL) and ~80% (Python) of the incorrect generations 

● How do users provide NL feedback when they identify problems? 
○ Direct instruction for error correction (58% for SQL and 70% for Python), question rephrasing, 

or step-by-step instructions 

● Can the LLM understand the user feedback and successfully incorporate it for error 
correction? 
○ Still very challenging! e.g., 35% (SQL) and 65% (Python) success rates for “direct instruction 

for error correction” feedback type 

24
Human-LLM Interaction via Language Feedback

(Work in Progress)Takeaway: still many 
challenges for LLMs serving 

as interactive NLIs!



Open Research Problems

● Future of human-LLM interaction 
○ How to prompt LLMs to generate explanations that are helpful to users? 
○ Psychological problems, e.g., cognitive bias, sycophancy (Wei et al., 2023) 
○ Personalization requires modeling users beyond their feedback 

● Improve human feedback following 
○ Many efforts on instruction following (Webson and Pavlick 2022; Jang et al., 2022) 
○ Being more challenging given the huge language variation of human feedback 

● Benchmark for human-LLM interactions  
○ Still an understudied field. Recent work: MINT (Wang et al., 2023)  
○ Our work characterized how humans express feedback in AI-assisted programming

25
Human-LLM Interaction via Language Feedback



This Talk: Building NLIs in the Age of LLMs
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Topic 1: Modeling Language Feedback in 
Human-NLI Interaction  

(Task: Text-to-Code Generation)

Topic 2: Saving the Monetary Cost of 
LLM API Usage 

(Task: Arithmetic/Symbolic/etc. Reasoning)

LLM Cascade for Cost-Saving Query



The Trade-Off between LLMs’ Cost($) and Performance

● More powerful, but also more expensive, LLMs 
○ E.g., GPT-4 vs. GPT-3.5-turbo

27
LLM Cascade for Cost-Saving Query

https://openai.com/pricing 

GPT-4

GPT-3.5-
turbo

20x $ for input 
30x $ for output 
More powerful 
but less 
affordable!

How can we save $ without sacrificing task performance? 
(Focus: Reasoning tasks)

https://openai.com/pricing


LLM Cascades with Mixture of Thought 
Representations for Cost-Efficient Reasoning

28
LLM Cascade for Cost-Saving Query

Murong Yue Jie Zhao Ziyu YaoMin Zhang Liang Du

ICLR 2024



LLM Cascades for Cost Saving

Intuition: easy questions can be handled by 
relatively weaker (and cheaper) LLMs to save $.

29
LLM Cascade for Cost-Saving Query

Decision making based on textual 
descriptions of question and answer; 

Do not work for Reasoning

Final cost: 
Extreme cases: only weaker LLM or only stronger LLM



Reasoning with Thought Representations

30
LLM Cascade for Cost-Saving Query

Q: A robe takes 2 bolts of blue fiber and half that 
much white fiber.  How many bolts in total does 
it take? 

A (CoT): It takes 2/2=1 bolt of white fiber. So the 
total amount of fabric is 2+1=3 bolts of fabric. 
ans=3 

A (PoT):  
# Python code, return ans 
bolts_of_blue_fiber = 2 
bolts_of_white_fiber = num_of_blue_fiber / 2 
ans = bolts_of_blue_fiber + bolts_of_white_fiber

GSM8k (Cobbe et al., 2021)

Q: Today is Christmas Eve of 1937. What is the date 
tomorrow in MM/DD/YYYY? 

(CoT) Explain: Today is the Christmas Eve of 1937, so today 
is 12/24/1937. 
Today is 12/24/1937, the date tomorrow is 12/25/1937. 
A: 12/25/1937 

(PoT) # Write Python Code to solve the following questions. 
from datetime import date, timedelta 
from dateutil.relativedelta import relativedelta 

# Q: Today is Christmas Eve of 1937. What is the date 
tomorrow in MM/DD/YYYY? 
# today is Christmas Eve of 1937, then today is 12/24/1937 
today = date(1937, 12, 24) 
# tomorrow 
date_tomorrow = today + relativedelta(days=1) 
# The answer formatted with %m/%d/%Y is 
ans = date_tomorrow.strftime('%m/%d/%Y') 

DATE (BIG-Bench Collaboration, 2021)
Chain of Thought (CoT; Wei et al., 2022) & 
Program of Thought (PoT; Chen et al., 2022, 
Gao et al., 2022)



● Idea: if the weaker LLM is uncertain about an answer, the question could be 
too challenging for it to solve 

● How to measure an LLM’s certainty on an answer?  
○ See how often it samples the same answer to the given question 
○ Same idea as “Self Consistency (SC)” (Wang et al., 2023) 

● Questions:  
○ Where to sample the answers for better judgment? 
○ How to quantify the answer consistency?

This Work: Answer Consistency-based Decision Making

31
LLM Cascade for Cost-Saving Query



Approaches 

● Vote-based decision making 

32

Sampled K Answers

LLM Cascade for Cost-Saving Query



Approaches 

● Vote-based decision making, 
sampling from  
○ a single thought representation  
○ a single demonstration set

33

Q: A robe takes 2 bolts of blue fiber and half that 
much white fiber.  How many bolts in total does 
it take? 

A: It takes 2/2=1 bolt of white fiber. So the total 
amount of fabric is 2+1=3 bolts of fabric. ans=3 

… (M shots of CoT examples) 

Q: Test question 
A: 

Sampled K answers

Method: CoT-1D-Vote

LLM Cascade for Cost-Saving Query



Approaches 

● Vote-based decision making, 
sampling from  
○ a single thought representation  
○ a single demonstration set

34

Q: A robe takes 2 bolts of blue fiber and half that 
much white fiber.  How many bolts in total does 
it take? 
 
A: 
# Python code, return ans 
bolts_of_blue_fiber = 2 
bolts_of_white_fiber = num_of_blue_fiber / 2 
ans = bolts_of_blue_fiber + bolts_of_white_fiber 

… (M shots of PoT examples) 

Q: Test question 
A: 

Sampled K answers

Method: PoT-1D-Vote

LLM Cascade for Cost-Saving Query



● Vote-based decision making, 
sampling from  
○ a single thought representation  
○ Two demonstration sets

Approaches 

35

Sampled K1 
answers

Q: A robe takes 2 bolts of blue fiber and half that much 
white fiber.  How many bolts in total does it take? 
A: It takes 2/2=1 bolt of white fiber. So the total amount of 
fabric is 2+1=3 bolts of fabric. ans=3 

… (M shots of CoT examples from Set 1) 
Q: Test question 
A: 

Sampled K2 
answers

Q: Manny had 3 birthday cookie pies to share with his 24 
classmates and his teacher, Mr. Keith. … 
A: There is a total of 3 x 10 = 30 cookie slices… ans = 4 

… (M shots of CoT examples from Set 2) 
Q: Test question 
A: 

Sampled 
K1+K2 

answers

Method: CoT-2D-Vote
(Similarly for PoT-2D-Vote)

LLM Cascade for Cost-Saving Query



● Vote-based decision making, 
sampling from  
○ Two thought representations 
○ a single demonstration set

Approaches 

36

Sampled K1 
answers

Q: A robe takes 2 bolts of blue fiber and half that much 
white fiber.  How many bolts in total does it take? 
A: It takes 2/2=1 bolt of white fiber. So the total amount of 
fabric is 2+1=3 bolts of fabric. ans=3 

… (M shots of CoT examples from Set 1) 
Q: Test question 
A: 

Sampled K2 
answers

Q: A robe takes 2 bolts of blue fiber and half that much 
white fiber.  How many bolts in total does it take? 
A: 
# Python code, return ans 
…ans = bolts_of_blue_fiber + bolts_of_white_fiber 

… (M shots of PoT examples from Set 1) 
Q: Test question 
A: 

Sampled 
K1+K2 

answers

Method: MoT-1D-Vote
“Mixture of Thought”

LLM Cascade for Cost-Saving Query



● Vote-based decision making, 
sampling from  
○ Two thought representations 
○ Two demonstration sets

Approaches 
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Sampled K1 
answers

Q: A robe takes 2 bolts of blue fiber and half that much 
white fiber.  How many bolts in total does it take? 
A: It takes 2/2=1 bolt of white fiber. So the total amount of 
fabric is 2+1=3 bolts of fabric. ans=3 

… (M shots of CoT examples from Set 1) 
Q: Test question 
A: 

Sampled K2 
answers

Q: Manny had 3 birthday cookie pies to share with his 24 
classmates and his teacher, Mr. Keith. … 
A:  
# Python code, return ans 
…ans = total_cookie_pies - total_person_count 

… (M shots of PoT examples from Set 2) 
Q: Test question 
A: 

Sampled 
K1+K2 

answers

Method: MoT-2D-Vote

LLM Cascade for Cost-Saving Query

Check out our paper for Verification-based Approaches



Experimental Results

38

Weaker LLM: GPT-3.5-turbo 
Stronger LLM: GPT-4

LLM Cascade for Cost-Saving Query

(Average over GSM8k, ASDIV, TabMWP, DATE, Navigate, CREPE)



Experimental Results
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Weaker LLM: GPT-3.5-turbo 
Stronger LLM: GPT-4

LLM Cascade for Cost-Saving Query

(Average over GSM8k, ASDIV, TabMWP, DATE, Navigate, CREPE)



Diversify Thought Representations for Uncertainty Measurement

● Mixture of Thought (MoT) introduces diverse “opinions”, similar to model 
ensemble, which helps uncertainty measurement

40
LLM Cascade for Cost-Saving Query



Diversify Thought Representations for Uncertainty Measurement

● Mixture of Thought (MoT) introduces diverse “opinions”, similar to model 
ensemble, which helps uncertainty measurement 
○ Applies to factual reasoning tasks as well

41
LLM Cascade for Cost-Saving Query

Dataset: StrategyQA 
(Geva et a., 2021)



Other Findings

● Decision-making based on textual hints (e.g., FrugalGPT)? 
○ Takeaway: it is very challenging to distinguish between easy and hard questions 

solely based on textual hints   

● How weak can the weaker LLM be? 
○ Experiments using LLAMA2 13B 
○ Takeaway: if an LLM is too weak, it won’t contribute to the cost saving, i.e., all 

questions will eventually be passed to the stronger LLM 

● Can outputs from the weaker LLM be hints to improve the stronger LLM? 
○ No, and they actually confuse the stronger LLM

42

Check out our papers for more details!

LLM Cascade for Cost-Saving Query



Discussion & Future Work

● LLM Uncertainty: Does an LLM know when it doesn’t know? 
○ Many discussions (Kadavath et al., 2022; Xiong et al., 2023; etc.) 
○ We showed the promise of mixing thought representations w/ vote-based metric  
○ Generalize to tasks where we cannot vote? (e.g., text generation) 

● Ensemble of multiple LLMs/LLM-powered agents 
○ Similar synergy between CoT and PoT: e.g., model selection (Zhao et a., 2023), 

fine-tuning (Yue et al., 2023)  
○ Generally speaking, tasking a cohort of LLMs, e.g., weaker vs. stronger, in-house 

vs. closed API, domain-specific vs. domain-general, etc.

43
LLM Cascade for Cost-Saving Query



This Talk: Building NLIs in the Age of LLMs
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Topic 1: Modeling Language Feedback in 
Human-NLI Interaction  

(Task: Text-to-Code Generation)

Topic 2: Saving the Monetary Cost of 
LLM API Usage 

(Task: Arithmetic/Symbolic/etc. Reasoning)

Future & Conclusion

Building simulators for feedback 
modeling; still challenges for LLMs as 

interactive NLIs

LLM cascades with Mixture-of-Thought 
decision-making helps uncertainty 

measurement and enables cost efficiency



New Preprint: LLM Agents for Education 
● LLM agents simulating students in 

collaborative mathematical problem solving 
○ A platform for students to practice their 

math modeling skills 
○ Helping students with limited educational 

resources

45
Future & Conclusion

Ziyu Yao 
(AI/LLM)

Janice Zhang  
(HCI)

Jenn Suh 
(MathEdu)

Murong Yue 
(AI/LLM)

Wijdane Mifdal 
(AI/LLM)



Thank You!
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30 min to D.C.

Email: ziyuyao@gmu.edu 
Webpage: https://ziyuyao.org/ 

mailto:ziyuyao@gmu.edu
https://ziyuyao.org/

