An Imitation Game for Learning Semantic Parsers from User Interaction

Ziyu Yao[†], Yiqi Tang[†], Scott Yih^{*}, Huan Sun[†], Yu Su[†]

[†]The Ohio State University *Facebook AI Research

EMNLP 2020

1

facebook Artificial Intelligence Research

- Parsing natural language (NL) to formal meaning representations
- Example: Text-to-SQL semantic parsing

Question:

How many CFL teams are from York College?

Table: CFLDraft

Pick #	CFL Team	Player	Position	College
27	Hamilton Tiger-Cats	Connor Healy	DB	Wilfrid Laurier
28	Calgary Stampeders	Anthony Forgone	OL	York
29	Ottawa Renegades	L.P. Ladouceur	DT	California
30	Toronto Argonauts	Frank Hoffman	DL	York
			•••	

SQL:

SELECT COUNT CFL Team FROM CFLDraft WHERE College = "York"

Result:

2

Bootstrapping

Fine-tuning

- Bootstrapping
 - Collect NL-semantic parse data from annotators
 - Train model to commercial-grade performance (e.g., 95% acc on a test set)
 - Semantic parsers: data-hungry; expertise required
- Fine-tuning

- Bootstrapping
 - Collect NL-semantic parse data from annotators
 - Train model to commercial-grade performance (e.g., 95% acc on a test set)
 - Semantic parsers: data-hungry; expertise required
- Fine-tuning
 - After deployment
 - Continually analyze usage and collect new training data for emerging user needs

- Bootstrapping
 - Collect NL-semantic parse data from annotators
 - Train model to commercial-grade performance (e.g., 95% acc on a test set)
 - Semantic parsers: data-hungry; expertise required
- Fine-tuning
 - After deployment
 - Continually analyze usage and collect new training data for emerging user needs

PLUS: **privacy risks** when exposing user data to external developers

 Learning semantic parsers with human users in the loop

This Work

- Learning semantic parsers with human users in the loop
 - Semantic parser as an intelligent agent:
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs

This Work

- Learning semantic parsers with human users in the loop
 - Semantic parser as an intelligent agent:
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs reduced bootstrapping & fine-tuning cost

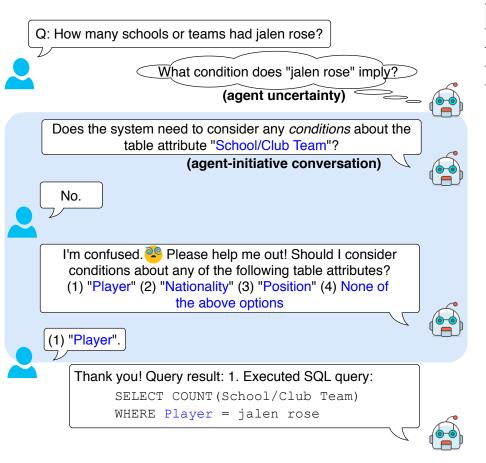
- Learning semantic parsers with human users in the loop
 - Semantic parser as an intelligent agent:
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs reduced bootstrapping & fine-tuning cost
 - User:
 - answer questions covered by their background knowledge
 - get to know more about the parsing system => more trust

- Learning semantic parsers with human users in the loop
 - Semantic parser as an intelligent agent:
 - being introspective of its uncertainties
 - prompt for user interaction
 - continually accumulate user feedback, improve itself and adapt for user needs reduced bootstrapping & fine-tuning cost
 - User:
 - answer questions covered by their background knowledge
 - get to know more about the parsing system => more trust

reduced privacy risks

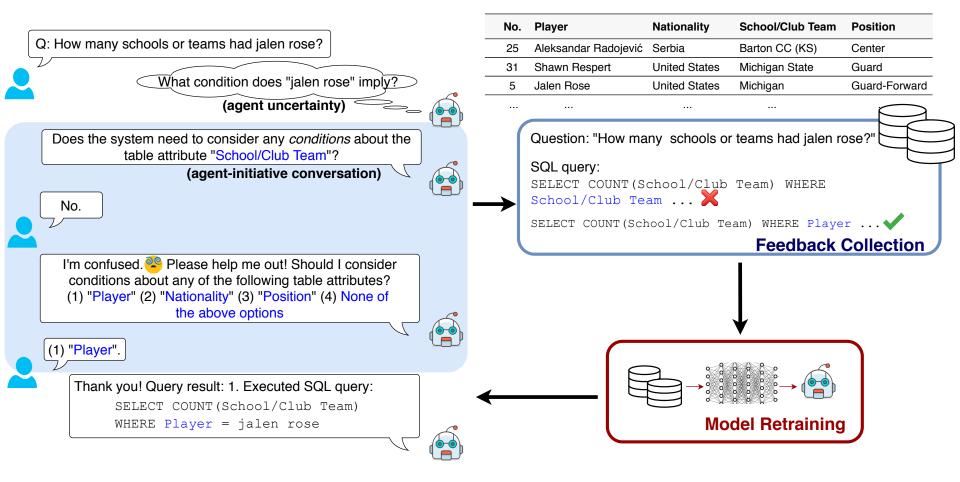
An interactive system that continually trains a semantic parser from **fine-grained user interaction** after deployment.

MISP-NEIL



No.	Player	Nationality	School/Club Team	Position
25	Aleksandar Radojević	Serbia	Barton CC (KS)	Center
31	Shawn Respert	United States	Michigan State	Guard
5	Jalen Rose	United States	Michigan	Guard-Forward

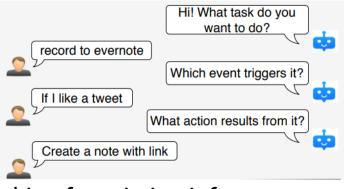
MISP-NEIL



- Introduction
- MISP-NEIL architecture
 - Interactive semantic parsing with MISP
 - NEIL: a<u>N</u>notation-<u>E</u>fficient <u>I</u>mitation <u>L</u>earning (with theoretical analysis)
- Experiments
- Future work

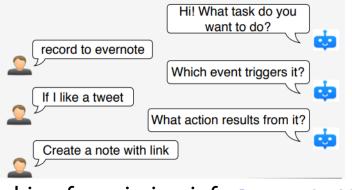
 A recent idea of involving system-user interaction to improve semantic parsing

 A recent idea of involving system-user interaction to improve semantic parsing



asking for missing info [Yao et al., 2019a]

 A recent idea of involving system-user interaction to improve semantic parsing



asking for missing info [Yao et al., 2019a]

User: Can you create a meeting with Megan right before that starts?

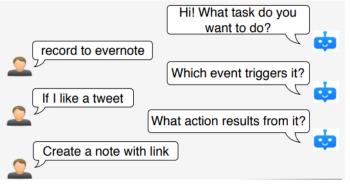
```
createEvent(EventSpec(
   end=start(<u>refer</u>(Constraint[Event]())),
   attendee=PersonSpec(name='Megan')
))
```

Agent: Which person named Megan did you mean?

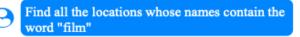
User: Megan Bowen.

disambiguation [Semantic Machines 2020]

 A recent idea of involving system-user interaction to improve semantic parsing



asking for missing info [Yao et al., 2019a]



finding the Address of Locations table for which Location_Name contains "film"

Address

770 Edd Lane Apt. 098

14034 Kohler Drive

Address is wrong. I want the name of the locations

post correction [Elgohary et al., 2020]

User: Can you create a meeting with Megan right before that starts?

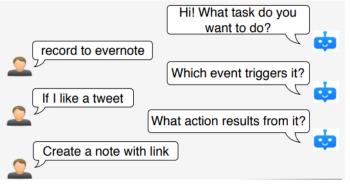
```
createEvent(EventSpec(
   end=start(<u>refer</u>(Constraint[Event]())),
   attendee=PersonSpec(name='Megan')
))
```

Agent: Which person named Megan did you mean?

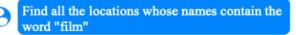
User: Megan Bowen.

disambiguation [Semantic Machines 2020]

 A recent idea of involving system-user interaction to improve semantic parsing



asking for missing info [Yao et al., 2019a]



finding the Address of Locations table for which Location_Name contains "film"

Address

770 Edd Lane Apt. 098

14034 Kohler Drive

Address is wrong. I want the name of the locations

post correction [Elgohary et al., 2020]

User: Can you create a meeting with Megan right before that starts?

```
createEvent(EventSpec(
   end=start(refer(Constraint[Event]())),
   attendee=PersonSpec(name='Megan')
))
```

Agent: Which person named Megan did you mean?

User: Megan Bowen.

contains keyword phd study

disambiguation [Semantic Machines 2020]

Find all unread emails a	Search		
Parameters:			
is not read	\sim	Remove	

None

Add

Remove

Edit

user post edit via GUI [Su et al., 2018]

 \sim

- MISP (Model-based Interactive Semantic Parser) [Yao et al., 2019b]
 - A general, unified framework
 - Generalization:
 - can be used with various semantic parser architectures & logical forms
 - User-friendly:
 - fine-grained natural language questions (generally covered by user background knowledge)

- MISP (Model-based Interactive Semantic Parser) [Yao et al., 2019b]
 - A general, unified framework
 - Generalization:
 - can be used with various semantic parser architectures & logical forms
 - User-friendly:
 - fine-grained natural language questions (generally covered by user background knowledge)

Please refer to [Yao et al., 2019b] for more details. Open source: <u>https://github.com/sunlab-osu/MISP</u>

Introduction

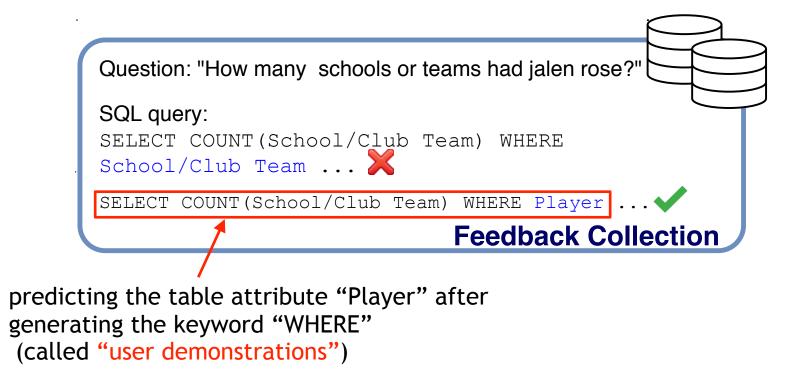
MISP-NEIL architecture

Interactive semantic parsing with MISP

NEIL: a<u>N</u>notation-<u>E</u>fficient <u>I</u>mitation <u>L</u>earning (with theoretical analysis)

- Experiments
- Future work

Recall: user feedback in MISP-NEIL



 Imitation learning: training the semantic parser to *imitate* "user demonstrations" collected during interaction

- Imitation learning: training the semantic parser to *imitate* "user demonstrations" collected during interaction
- "annotation-efficient"
 - The agent needs to avoid asking too many questions to the user
 - Challenge: *sparse* user demonstrations

- Imitation learning: training the semantic parser to *imitate* "user demonstrations" collected during interaction
- "annotation-efficient"
 - The agent needs to avoid asking too many questions to the user
 - Challenge: sparse user demonstrations
 - Solution: collecting both user demonstrations and agent-confident actions (without user validation) as training labels

- A DAGGER-liked algorithm [Ross et al., 2011]
 - Iteratively aggregate demonstrations as new training labels and retrain the parser (called "policy")

```
For each iteration i=1 to N:
    Receive user questions {q};
    New training labels ← Parse&Collect(question q, policy_i);
    Aggregate new training labels;
    Train policy_{i+1} on aggregated training data (including the
    pre-training data).
Return the best policy i on validation.
```

- A DAGGER-liked algorithm [Ross et al., 2011]
 - Iteratively aggregate demonstrations as new training labels and retrain the parser (called "policy")

```
For each iteration i=1 to N:
    Receive user questions {q};
    New training labels ← Parse&Collect(question q, policy_i);
    Aggregate new training labels;
    Train policy_{i+1} on aggregated training data (including the
    pre-training data).
Return the best policy_i on validation.
```

- A DAGGER-liked algorithm [Ross et al., 2011]
 - Iteratively aggregate demonstrations as new training labels and retrain the parser (called "policy")

```
For each iteration i=1 to N:
    Receive user questions {q};
    New training labels ← Parse&Collect(question q, policy_i);
    Aggregate new training labels;
    Train policy_{i+1} on aggregated training data (including the
    pre-training data).
Return the best policy i on validation.
```

*including user-demonstrated and agentconfident actions

- A DAGGER-liked algorithm [Ross et al., 2011]
 - Iteratively aggregate demonstrations as new training labels and retrain the parser (called "policy")

For each iteration i=1 to N:
 Receive user questions {q};
 New training labels ← Parse&Collect(question q, policy_i);
 Aggregate new training labels;
 Train policy_{i+1} on aggregated training data (including the
 pre-training data).
Return the best policy_i on validation.

- A DAGGER-liked algorithm [Ross et al., 2011]
 - Iteratively aggregate demonstrations as new training labels and retrain the parser (called "policy")

```
For each iteration i=1 to N:
    Receive user questions {q};
    New training labels ← Parse&Collect(question q, policy_i);
    Aggregate new training labels;
    Train policy_{i+1} on aggregated training data (including the
    pre-training data).
Return the best policy_i on validation.
```

Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. *fully-supervised* approach

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. fully-supervised approach
- A new "cost function" for semantic parsing tasks
 - smaller cost, better algorithm

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. fully-supervised approach
- A new "cost function" for semantic parsing tasks
 - smaller cost, better algorithm

Theorem 5.1. For supervised approach, let $\epsilon_N = \min_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi^*}}[l(s, \pi)]$, then $J(\hat{\pi}_{sup}) = T\epsilon_N$.

Theorem 5.2. For the proposed NEIL algorithm, if N is $\tilde{O}(T)$, there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t. $J(\hat{\pi}) \leq T \left[\epsilon_N + \frac{2T\ell_{max}}{N} \sum_{i=1}^N e_i \right] + O(1).$

e_i: probability of confident but
wrong actions

Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. *fully-supervised* approach

A ne (1) more accurate confidence estimation;
 sn e> decision probability with a high confidence threshold

Theorem 5.2. For the proposed NEIL algorithm, if N is $\tilde{O}(T)$, there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t. $J(\hat{\pi}) \leq T \left[\epsilon_N + \frac{2T\ell_{max}}{N} \sum_{i=1}^N e_i \right] + O(1).$

e_i: probability of confident but

wrong actions

(S

Theoretical Analysis

- NEIL is annotation-efficient, but would it lead to much worse semantic parsers?
 - vs. *fully-supervised* approach

Key factors to reduce NEIL's performance loss:

A ne (1) more accurate confidence estimation;
 sn e> decision probability with a high confidence threshold

(2) moderate policy initialization. => verify in experiments

Theorem 5.2. For the proposed NEIL algorithm, if N is $\tilde{O}(T)$, there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t. $J(\hat{\pi}) \leq T \left[\epsilon_N + \frac{2T\ell_{max}}{N} \sum_{i=1}^N e_i \right] + O(1).$

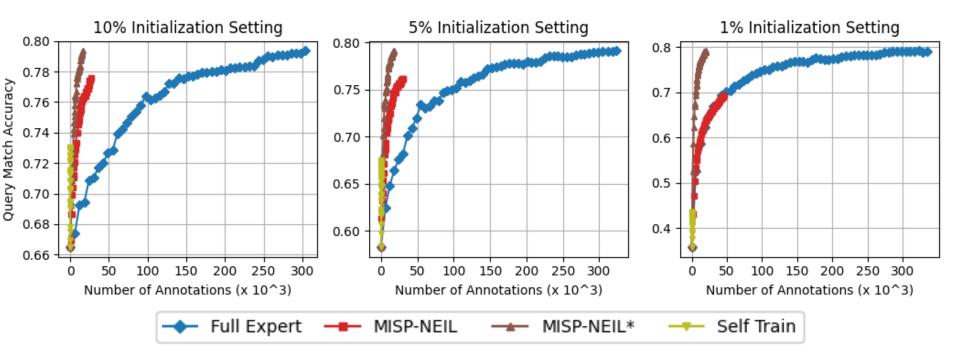
e_i: probability of confident but

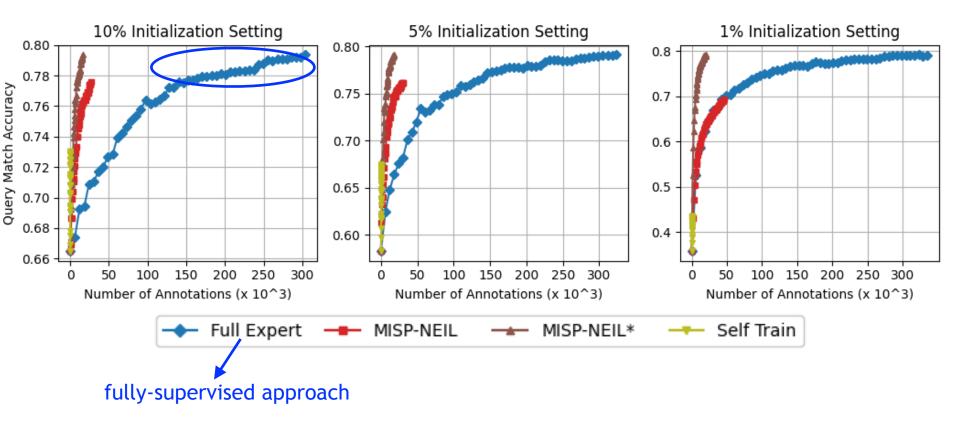
wrong actions

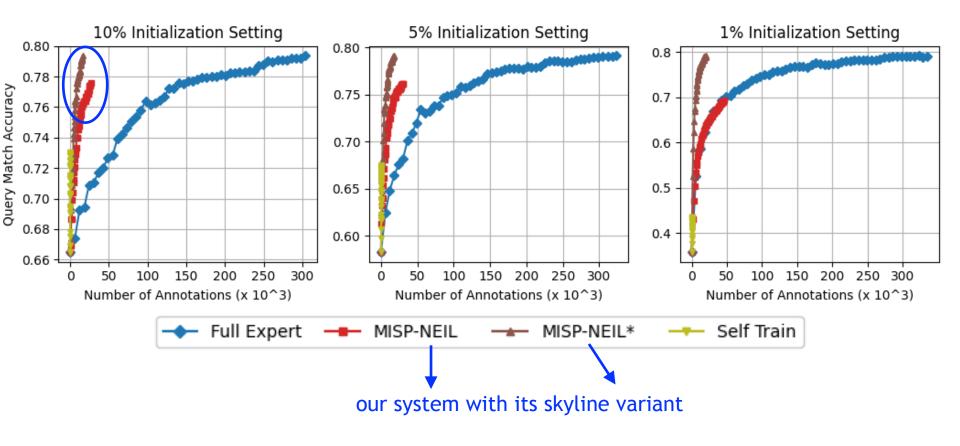
S

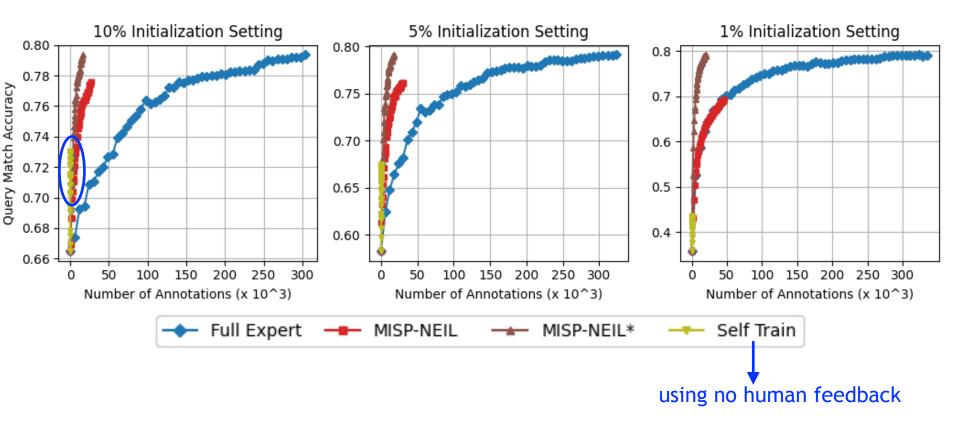
- Introduction
- MISP-NEIL architecture
 - Interactive semantic parsing with MISP
 - **NEIL:** a<u>N</u>notation-<u>E</u>fficient <u>I</u>mitation <u>L</u>earning (with theoretical analysis)
- Experiments
- Future work

- Benchmark dataset: WikiSQL [Zhong et al., 2017]
- Base semantic parser: SQLova [Hwang et al., 2019]
- Three parser initialization settings
 - using 10% (around 5K), 5% and 1% (around 500) of the training data
- Iterative parser learning
 - In each iteration, simulate 1K (unlabeled) user questions
 - Simulated user interaction/feedback

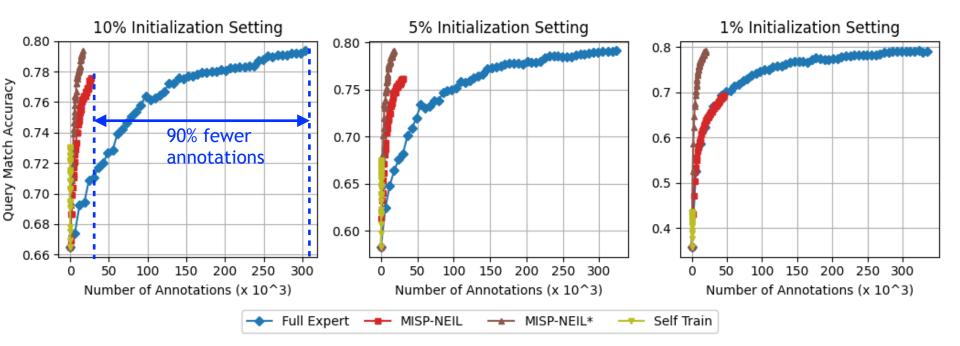








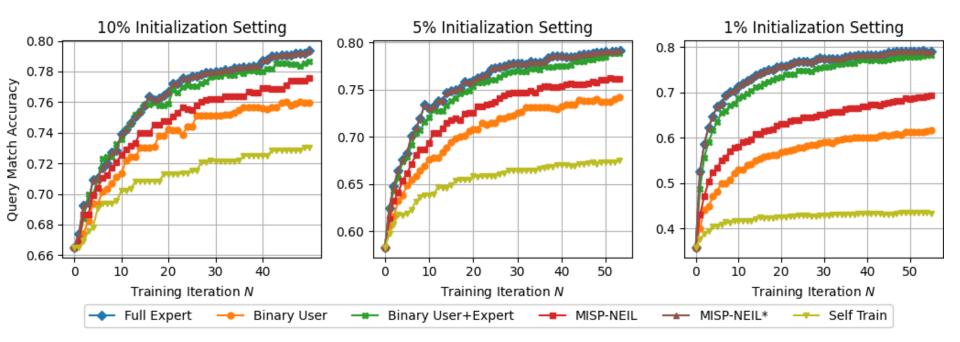
 Parser's test-time accuracy when each system has consumed a certain number of annotations in training



Observation: MISP-NEIL enjoys the best annotation efficiency (PLUS collecting annotations from *users* rather than *experts*)

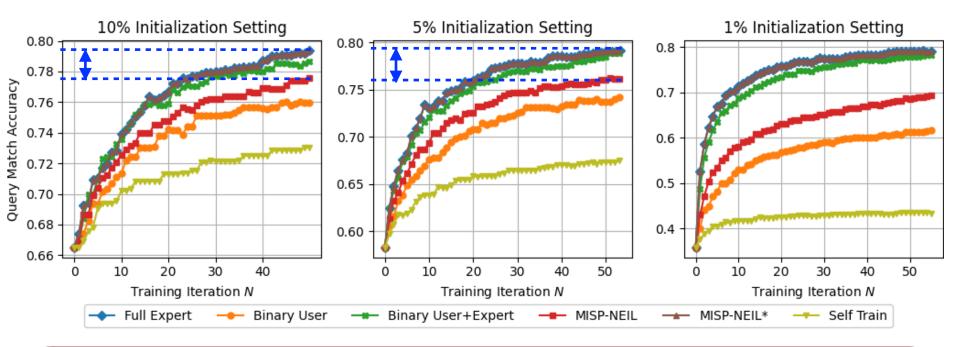
Comparison on Training Effectiveness

 Parser's test-time accuracy when each system has trained the parser for the same number of iterations



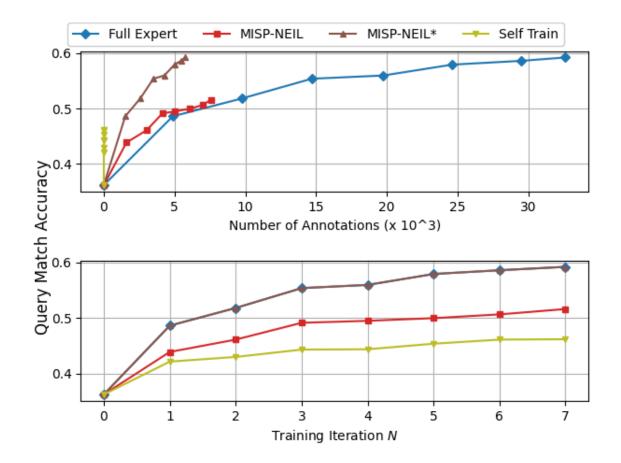
Comparison on Training Effectiveness

 Parser's test-time accuracy when each system has trained the parser for the same number of iterations



(1) When the parser is moderately initialized (10%/5% setting), MISP-NEIL is comparable with Full Expert (only 2% Acc loss) while being annotation-efficient;
(2) MISP-NEIL also outperforms other learning-from-user systems.

Experimental Results on Spider



Please check out our paper for more details

- Introduction
- MISP-NEIL architecture
 - Interactive semantic parsing with MISP
 - **NEIL:** a<u>N</u>notation-<u>E</u>fficient <u>I</u>mitation <u>L</u>earning (with theoretical analysis)
- Experiments
- Future work

- Large-scale user study
 - MISP is shown helpful for end-users in a small user test [Yao et al., 2019]
 - We aim at a more realistic test with crowd workers
- More accurate uncertainty estimation
 - Neural semantic parsers tend to be overconfident
 - Possible solutions: neural network calibration [Guo et al., 2017], using machine learning modules [Zhao et al., 2017; Fang et al., 2017]
- NEIL for saving annotations for low-resource tasks

Acknowledgement

Ohio Supercomputer Center An OH·TECH Consortium Member

FUJITSU

Code is available at: https://github.com/sunlab-osu/MISP

Thank you!

