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■ Parsing natural language (NL) to formal meaning 
representations 

■ Example: Text-to-SQL semantic parsing

Semantic Parsing
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From WikiSQL [Zhong et al., 2017]



The Life Cycle of Semantic Parsers

■ Bootstrapping 

■ Fine-tuning
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■ Bootstrapping 
❑ Collect NL-semantic parse data from annotators 
❑ Train model to commercial-grade performance (e.g., 

95% acc on a test set) 
❑ Semantic parsers: data-hungry; expertise required 

■ Fine-tuning
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PLUS: privacy risks when exposing 
user data to external developers

The Life Cycle of Semantic Parsers



This Work

■ Learning semantic parsers with human users in 
the loop
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reduced bootstrapping & fine-tuning cost

reduced privacy risks



MISP-NEIL
An interactive system that continually trains a semantic parser 

from fine-grained user interaction after deployment.



... ... ... ... ...

DReV WKe V\VWeP Qeed WR cRQVLdeU aQ\ cRndiWiRnV abRXW WKe
WabOe aWWULbXWe "ScKRRO/COXb TeaP"?

NR.

Q: HRZ PaQ\ VcKRROV RU WeaPV Kad MaOeQ URVe?

WKaW cRQdLWLRQ dReV "MaOeQ URVe" LPSO\?

I'P cRQfXVed.¬ ¬ ¬ POeaVe KeOS Pe RXW! SKRXOd I cRQVLdeU
cRQdLWLRQV abRXW aQ\ Rf WKe fROORZLQJ WabOe aWWULbXWeV?
(1) "POa\eU" (2) "NaWLRQaOLW\" (3) "PRVLWLRQ" (4) NRQe Rf 

WKe abRYe RSWLRQV

(1) "POa\eU".

¬TKaQN \RX! QXeU\ UeVXOW: 1. E[ecXWed SQL TXeU\:
SELECT�COUNT(School/Club�Team)�
WHERE�Player�=�jalen�rose��

Feedback CollecWion

Model ReWUaining

(agent uncertaint\)

NR. Pla\eU NaWiRQaliW\ SchRRl/ClXb Team PRViWiRQ

25 AlekVandaU RadRjeYiþ SeUbia BaUWRn CC (KS) CenWeU
31 ShaZn ReVSeUW UniWed SWaWeV Michigan SWaWe GXaUd
5 Jalen RRVe UniWed SWaWeV Michigan GXaUd-FRUZaUd

(agent-initiative conversation)

QXeVWLRQ: "HRZ PaQ\¬ VcKRROV RU WeaPV Kad MaOeQ URVe?"

SQL TXeU\:

SELECT�COUNT(SFKRRO/COXE�THDP)�:HERE�POD\HU�...

SELECT�COUNT(School/Club�Team)�WHERE
School/Club�Team�...

MISP-NEIL
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Outline

■ Introduction 

■ MISP-NEIL architecture 

❑ Interactive semantic parsing with MISP 

❑ NEIL: aNnotation-Efficient Imitation Learning 
(with theoretical analysis) 

■ Experiments 

■ Future work
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Interactive Semantic Parsing

■ A recent idea of involving system-user 
interaction to improve semantic parsing
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disambiguation [Semantic Machines 2020]
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asking for missing info [Yao et al., 2019a]

post correction [Elgohary et al., 2020]

disambiguation [Semantic Machines 2020]



Interactive Semantic Parsing

■ A recent idea of involving system-user 
interaction to improve semantic parsing
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asking for missing info [Yao et al., 2019a]

post correction [Elgohary et al., 2020]

disambiguation [Semantic Machines 2020]

user post edit via GUI [Su et al., 2018]



Interactive Semantic Parsing

■ MISP (Model-based Interactive Semantic Parser) [Yao 
et al., 2019b] 
❑ A general, unified framework 
❑ Generalization: 

■ can be used with various semantic parser architectures & 
logical forms 

❑ User-friendly:  
■ fine-grained natural language questions (generally covered 

by user background knowledge) 
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Please refer to [Yao et al., 2019b] for more details. 
Open source: https://github.com/sunlab-osu/MISP 

https://github.com/sunlab-osu/MISP
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predicting the table attribute “Player” after 
generating the keyword “WHERE”
(called “user demonstrations”)



NEIL: aNnotation-Efficient Imitation Learning

■ Imitation learning: training the semantic parser 
to imitate “user demonstrations” collected 
during interaction
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NEIL: aNnotation-Efficient Imitation Learning

■ Imitation learning: training the semantic parser 
to imitate “user demonstrations” collected 
during interaction 

■ “annotation-efficient” 
❑ The agent needs to avoid asking too many questions 

to the user 
❑ Challenge: sparse user demonstrations 
❑ Solution: collecting both user demonstrations and 

agent-confident actions (without user validation) as 
training labels
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■ A DAGGER-liked algorithm [Ross et al., 2011] 
❑ Iteratively aggregate demonstrations as new training labels and 

retrain the parser (called “policy”)

NEIL: aNnotation-Efficient Imitation Learning
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For each iteration i=1 to N: 
Receive user questions {q}; 
New training labels ← Parse&Collect(question q, policy_i); 
Aggregate new training labels; 
Train policy_{i+1} on aggregated training data (including the 
pre-training data). 

Return the best policy_i on validation.
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*including user-demonstrated and agent-
confident actions
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Key factors to reduce NEIL’s performance loss: 

 (1) more accurate confidence estimation; 
=> decision probability with a high 
confidence threshold 

 (2) moderate policy initialization.  
=> verify in experiments

e_i: probability of confident but 
wrong actions



Outline
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■ MISP-NEIL architecture 
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Experimental Setup

■ Benchmark dataset: WikiSQL [Zhong et al., 2017] 

■ Base semantic parser: SQLova [Hwang et al., 2019] 

■ Three parser initialization settings 
❑ using 10% (around 5K), 5% and 1% (around 500) of the 

training data 

■ Iterative parser learning 
❑ In each iteration, simulate 1K (unlabeled) user questions 
❑ Simulated user interaction/feedback
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■ Parser’s test-time accuracy when each system has consumed 
a certain number of annotations in training

Comparison on Annotation Efficiency
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fully-supervised approach
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our system with its skyline variant
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Comparison on Annotation Efficiency
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using no human feedback



■ Parser’s test-time accuracy when each system has consumed 
a certain number of annotations in training

Comparison on Annotation Efficiency
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Observation: MISP-NEIL enjoys the best annotation efficiency 
(PLUS collecting annotations from users rather than experts)

90% fewer 
annotations



Comparison on Training Effectiveness

■ Parser’s test-time accuracy when each system has trained the 
parser for the same number of iterations
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parser for the same number of iterations

 46

(1) When the parser is moderately initialized (10%/5% setting), MISP-NEIL is 
comparable with Full Expert (only 2% Acc loss) while being annotation-efficient; 
(2) MISP-NEIL also outperforms other learning-from-user systems.



Experimental Results on Spider
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Please check out our paper for more details
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Future Work

■ Large-scale user study 
❑ MISP is shown helpful for end-users in a small user test [Yao 

et al., 2019] 
❑ We aim at a more realistic test with crowd workers 

■ More accurate uncertainty estimation 
❑ Neural semantic parsers tend to be overconfident 
❑ Possible solutions: neural network calibration [Guo et al., 

2017], using machine learning modules [Zhao et al., 2017; Fang 
et al., 2017] 

■ NEIL for saving annotations for low-resource tasks
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Code is available at: https://github.com/sunlab-osu/MISP 

Thank you!

https://github.com/sunlab-osu/MISP

